Abstraction As A Service

By , December 19, 2017 7:55 pm

The birth of abstraction layers

The last five decades of computing have seen a gradual progression of architectural abstraction layers. Around 50 years ago, IBM mainframes gained virtualization capabilities. Despite explosive progress in the sophistication of hardware following Moore’s Law, there wasn’t too much further innovation in abstraction layers in server computing until well after the dawn of the microcomputer era, in the early 2000s, when virtualization suddenly became all the rage again. (I heard a rumour that this was due to certain IBM patents expiring, but maybe that’s an urban myth.) Different types of hypervisors emerged, including early forms of containers.

Then we started to realise that a hypervisor wasn’t enough, and we needed a whole management layer to keep control of the new “VM sprawl” problem which had arisen. A whole bunch of solutions appeared, including the concept of “cloud”, but many were proprietary, and so after a few years OpenStack came along to the rescue!

The cloud era

But then we realised that managing OpenStack itself was a pain, and someone had the idea that rather than building a separate management layer for managing OpenStack, we could just use OpenStack to manage itself! And so OpenStack on OpenStack, or Triple-O as it’s now known, was born.

Within and alongside OpenStack, several other new exciting trends emerged: Software-Defined Networking (SDN), Software-Defined Storage (e.g. Ceph), etc. So the umbrella term Software-Defined Infrastructure was coined to refer to this group of abstraction layers.

Continue reading 'Abstraction As A Service'»


Announcing OpenStack’s Self-healing SIG

By , November 24, 2017 4:15 pm

One of the biggest promises of the cloud vision was the idea that all infrastructure could be managed in a policy-driven fashion, reacting to failures and other events by automatically healing and optimising services.

In OpenStack, most of the components required to implement such an architecture already exist, and are nicely scoped, for the most part without too much overlap:

However, there is not yet a clear strategy within the community for how these should all tie together. (The OPNFV community is arguably further ahead in this respect, but hopefully some of their work could be applied outside NFV-specific environments.)

Designing a new SIG

To address this, I organised an unofficial kick-off meeting at the PTG in Denver, at which it became clear that there was sufficient interest in this idea from many of the above projects in order to create a new “Self-healing” SIG. However, there were still open questions:

  1. What exactly should be the scope of the SIG? Should it be for developers and operators, or also end users?
  2. What should the name be? Is “self-healing” good enough, or should it also include, say, non-failure scenarios like optimization?

Continue reading 'Announcing OpenStack’s Self-healing SIG'»


Squash-merging and other problems with GitHub

By , August 16, 2017 6:45 pm

(Thanks to Ben North, Colleen Murphy, and Nicolas Bock for reviewing earlier drafts of this post.)

In April 2016, GitHub announced a new feature supporting squashing of multiple commits in a PR at merge-time (announced on April 1st, but it was actually bona-fide 😉 ).

I appreciate that there was high demand for this feature (and similarly on GitLab), and apparently that many projects have a “squash before submitting a PR” policy, but I’d like to contend that this is a poor-man’s workaround for the lack of a real solution to the underlying problems.

Why squash-merge?

So what are the underlying problems which made this such a frequently requested feature? From reading the various links above, it seems that by far the biggest motivator is that people frequently submit pull requests (or merge requests, in GitLab-speak) which contain multiple commits, and these commits are seen as too “noisy” / fine-grained. In other words there is a desire to not pollute the target/trunk branch (e.g. master) with these fine-grained commits, and instead only have larger, less fine-grained commits merged.

But where does this desire come from? Well, if the fine-grained commits which accumulate on a PR branch are frequently amendments to earlier commits in the same PR (like “oops, fix typo I just made” or “oops, fix bug I just introduced”) then this desire is entirely understandable, because noone wants to see that kind of mess on master. However the real problem here is that that kind of mess should have never made it onto GitHub in the first place – not even onto a PR branch! It should have instead been fixed in the developer’s local repository. That is why there is a whole section in the “Pro Git” book dedicated to explaining how to rewrite local history, and why git-commit(1) and git-rebase(1) have native support for creating and squashing “fixup” commits into commits which they fix.

Use the force-push, Luke

If an existing PR needs to be amended, make the change and then rewrite local history so that it’s clean. The new version of the branch can then be force-pushed to GitHub via git push -f, which is an operation GitHub understands and in many situations handles reasonably gracefully. I have previously blogged about why this way is better, but one way of quickly summarising it is: don’t wash your dirty linen in public any more than you have to.

Continue reading 'Squash-merging and other problems with GitHub'»


Cloud rearrangement for fun and profit

By , May 17, 2015 4:42 am

In a populated compute cloud, there are several scenarios in which it’s beneficial to be able to rearrange VM guest instances into a different placement across the hypervisor hosts via migration (live or otherwise). These use cases typically fall into three categories:

  1. Rebalancing – spread the VMs evenly across as many physical VM host machines as possible (conceptually similar to vSphere DRS). Example use cases:
  2. Consolidation – condense VMs onto fewer physical VM host machines (conceptually similar to vSphere DPM). Typically involves some degree of defragmentation. Example use cases:
  3. Evacuation – free up physical servers:

Whilst one-shot manual or semi-automatic rearrangement can bring immediate benefits, the biggest wins often come when continual rearrangement is automated. The approaches can also be combined, e.g. first evacuate and/or consolidate, then rebalance on the remaining physical servers.

Other custom rearrangements may be required according to other IT- or business-driven policies, e.g. only rearrange VM instances relating to a specific workload, in order to increase locality of reference, reduce latency, respect availability zones, or facilitate other out-of-band workflows or policies (such as data privacy or other legalities).

In the rest of this post I will expand this topic in the context of OpenStack, talk about the computer science behind it, propose a possible way forward, and offer a working prototype in Python.

If you’re in Vancouver for the OpenStack summit which starts this Monday and you find this post interesting, ping me for a face-to-face chat!

Continue reading 'Cloud rearrangement for fun and profit'»


Tories to limit use of mathematics in amendment to anti-terrorism bill

By , May 9, 2015 3:45 am

Following on from the Conservative Party’s plans to take immediate advantage of their new majority in the House of Commons by pushing through surveillance powers known as the Snoopers’ Charter, the party has announced an amendment to the bill which will make it illegal for anyone to use any form of mathematics not on a government-approved whitelist.

In yesterday’s announcement, Theresa May, who as home secretary led the original legislation, said: “We were disappointed to receive feedback on the original Communications Data Bill from technology experts and civil liberties campaigners who considered it more important for citizens to be able to continue using encryption for non-essential activities like secure online shopping / banking, than for the police to be able to monitor the communications of anyone who could be a terrorist. The country was extremely healthy under John Major’s government in the 1990s before online services such as e-commerce and e-banking even existed, so it is a trivial and easily justifiable sacrifice to replace the freedom to use those services securely with laws creating a powerful deterrent for terrorists, who would face stiff fines and potentially even jail-time if found guilty of using encrypted communications.”

“However, during consultations with the financial sector in the City, we have been advised that banning use of all encryption software would prevent large UK corporations from trading on global markets.”

She continued, “We also discovered that communication can be encrypted non-electronically, for example using simple mathematical techniques on pen and paper, and we cannot in good conscience allow potential terrorists to use these techniques without fear of being arrested and detained for an arbitrary amount of questioning.”

“Therefore the only logical course of action is to amend the bill to ban use of all types of mathematics for which permission has not been explicitly granted by the government. A whitelist will be drafted for the upcoming debate on the bill. In order to avoid any impact on the economy, a special security exception will be made to allow financial institutions to continue using mathematics as before. For ordinary citizens, basic arithmetic will of course be allowed, although in financial contexts some restrictions will be imposed; for example, in the interests of national security, it will be forbidden for the general public to perform calculations relating to any personal expenditure of MPs or peers in the House of Lords.”

David Cameron issued a separate statement reinforcing the Home Secretary’s announcement and also rejecting an opposing argument which highlighted that whilst every year in the UK around 2,000 people die from traffic accidents and 65,000 from heart disease, in the past 5 years there have only been 2 people killed through terrorism. “Terrorism is a rising global threat, and must be countered at any cost, even at the expense of civil liberties and personal privacy”, the newly re-elected Prime Minster said. “If you have nothing to hide, why would you need privacy anyway? Everybody already shares everything on Facebook anyway.”


Panorama Theme by Themocracy